Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Genes responsive to elevated CO2 concentrations in triploid white poplar and integrated gene network analysis.

Identifieur interne : 002217 ( Main/Exploration ); précédent : 002216; suivant : 002218

Genes responsive to elevated CO2 concentrations in triploid white poplar and integrated gene network analysis.

Auteurs : Juanjuan Liu [République populaire de Chine] ; Jianguo Zhang [République populaire de Chine] ; Caiyun He [République populaire de Chine] ; Aiguo Duan [République populaire de Chine]

Source :

RBID : pubmed:24847851

Descripteurs français

English descriptors

Abstract

BACKGROUND

The atmospheric CO2 concentration increases every year. While the effects of elevated CO2 on plant growth, physiology and metabolism have been studied, there is now a pressing need to understand the molecular mechanisms of how plants will respond to future increases in CO2 concentration using genomic techniques.

PRINCIPAL FINDINGS

Gene expression in triploid white poplar ((Populus tomentosa ×P. bolleana) ×P. tomentosa) leaves was investigated using the Affymetrix poplar genome gene chip, after three months of growth in controlled environment chambers under three CO2 concentrations. Our physiological findings showed the growth, assessed as stem diameter, was significantly increased, and the net photosynthetic rate was decreased in elevated CO2 concentrations. The concentrations of four major endogenous hormones appeared to actively promote plant development. Leaf tissues under elevated CO2 concentrations had 5,127 genes with different expression patterns in comparison to leaves under the ambient CO2 concentration. Among these, 8 genes were finally selected for further investigation by using randomized variance model corrective ANOVA analysis, dynamic gene expression profiling, gene network construction, and quantitative real-time PCR validation. Among the 8 genes in the network, aldehyde dehydrogenase and pyruvate kinase were situated in the core and had interconnections with other genes.

CONCLUSIONS

Under elevated CO2 concentrations, 8 significantly changed key genes involved in metabolism and responding to stimulus of external environment were identified. These genes play crucial roles in the signal transduction network and show strong correlations with elevated CO2 exposure. This study provides several target genes, further investigation of which could provide an initial step for better understanding the molecular mechanisms of plant acclimation and evolution in future rising CO2 concentrations.


DOI: 10.1371/journal.pone.0098300
PubMed: 24847851
PubMed Central: PMC4029852


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Genes responsive to elevated CO2 concentrations in triploid white poplar and integrated gene network analysis.</title>
<author>
<name sortKey="Liu, Juanjuan" sort="Liu, Juanjuan" uniqKey="Liu J" first="Juanjuan" last="Liu">Juanjuan Liu</name>
<affiliation wicri:level="3">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China; Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China; Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Jianguo" sort="Zhang, Jianguo" uniqKey="Zhang J" first="Jianguo" last="Zhang">Jianguo Zhang</name>
<affiliation wicri:level="3">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China; Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China; Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="He, Caiyun" sort="He, Caiyun" uniqKey="He C" first="Caiyun" last="He">Caiyun He</name>
<affiliation wicri:level="3">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China; Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China; Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Duan, Aiguo" sort="Duan, Aiguo" uniqKey="Duan A" first="Aiguo" last="Duan">Aiguo Duan</name>
<affiliation wicri:level="3">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China; Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China; Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24847851</idno>
<idno type="pmid">24847851</idno>
<idno type="doi">10.1371/journal.pone.0098300</idno>
<idno type="pmc">PMC4029852</idno>
<idno type="wicri:Area/Main/Corpus">002182</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002182</idno>
<idno type="wicri:Area/Main/Curation">002182</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002182</idno>
<idno type="wicri:Area/Main/Exploration">002182</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Genes responsive to elevated CO2 concentrations in triploid white poplar and integrated gene network analysis.</title>
<author>
<name sortKey="Liu, Juanjuan" sort="Liu, Juanjuan" uniqKey="Liu J" first="Juanjuan" last="Liu">Juanjuan Liu</name>
<affiliation wicri:level="3">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China; Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China; Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Jianguo" sort="Zhang, Jianguo" uniqKey="Zhang J" first="Jianguo" last="Zhang">Jianguo Zhang</name>
<affiliation wicri:level="3">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China; Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China; Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="He, Caiyun" sort="He, Caiyun" uniqKey="He C" first="Caiyun" last="He">Caiyun He</name>
<affiliation wicri:level="3">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China; Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China; Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Duan, Aiguo" sort="Duan, Aiguo" uniqKey="Duan A" first="Aiguo" last="Duan">Aiguo Duan</name>
<affiliation wicri:level="3">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China; Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China; Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aldehyde Dehydrogenase (genetics)</term>
<term>Carbon Dioxide (chemistry)</term>
<term>Computational Biology (MeSH)</term>
<term>Gases (MeSH)</term>
<term>Gene Expression Regulation (MeSH)</term>
<term>Gene Regulatory Networks (MeSH)</term>
<term>Genomics (MeSH)</term>
<term>Oligonucleotide Array Sequence Analysis (MeSH)</term>
<term>Photosynthesis (MeSH)</term>
<term>Plant Leaves (genetics)</term>
<term>Plant Leaves (metabolism)</term>
<term>Polyploidy (MeSH)</term>
<term>Populus (genetics)</term>
<term>Populus (metabolism)</term>
<term>Pyruvate Kinase (genetics)</term>
<term>Real-Time Polymerase Chain Reaction (MeSH)</term>
<term>Signal Transduction (MeSH)</term>
<term>Transcriptome (MeSH)</term>
<term>Trees (genetics)</term>
<term>Trees (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Aldehyde dehydrogenase (génétique)</term>
<term>Arbres (génétique)</term>
<term>Arbres (métabolisme)</term>
<term>Biologie informatique (MeSH)</term>
<term>Dioxyde de carbone (composition chimique)</term>
<term>Feuilles de plante (génétique)</term>
<term>Feuilles de plante (métabolisme)</term>
<term>Gaz (MeSH)</term>
<term>Génomique (MeSH)</term>
<term>Photosynthèse (MeSH)</term>
<term>Polyploïdie (MeSH)</term>
<term>Populus (génétique)</term>
<term>Populus (métabolisme)</term>
<term>Pyruvate kinase (génétique)</term>
<term>Réaction de polymérisation en chaine en temps réel (MeSH)</term>
<term>Régulation de l'expression des gènes (MeSH)</term>
<term>Réseaux de régulation génique (MeSH)</term>
<term>Séquençage par oligonucléotides en batterie (MeSH)</term>
<term>Transcriptome (MeSH)</term>
<term>Transduction du signal (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Carbon Dioxide</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Aldehyde Dehydrogenase</term>
<term>Pyruvate Kinase</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Dioxyde de carbone</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Plant Leaves</term>
<term>Populus</term>
<term>Trees</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Aldehyde dehydrogenase</term>
<term>Arbres</term>
<term>Feuilles de plante</term>
<term>Populus</term>
<term>Pyruvate kinase</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Plant Leaves</term>
<term>Populus</term>
<term>Trees</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Arbres</term>
<term>Feuilles de plante</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Computational Biology</term>
<term>Gases</term>
<term>Gene Expression Regulation</term>
<term>Gene Regulatory Networks</term>
<term>Genomics</term>
<term>Oligonucleotide Array Sequence Analysis</term>
<term>Photosynthesis</term>
<term>Polyploidy</term>
<term>Real-Time Polymerase Chain Reaction</term>
<term>Signal Transduction</term>
<term>Transcriptome</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Biologie informatique</term>
<term>Gaz</term>
<term>Génomique</term>
<term>Photosynthèse</term>
<term>Polyploïdie</term>
<term>Réaction de polymérisation en chaine en temps réel</term>
<term>Régulation de l'expression des gènes</term>
<term>Réseaux de régulation génique</term>
<term>Séquençage par oligonucléotides en batterie</term>
<term>Transcriptome</term>
<term>Transduction du signal</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>The atmospheric CO2 concentration increases every year. While the effects of elevated CO2 on plant growth, physiology and metabolism have been studied, there is now a pressing need to understand the molecular mechanisms of how plants will respond to future increases in CO2 concentration using genomic techniques.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>PRINCIPAL FINDINGS</b>
</p>
<p>Gene expression in triploid white poplar ((Populus tomentosa ×P. bolleana) ×P. tomentosa) leaves was investigated using the Affymetrix poplar genome gene chip, after three months of growth in controlled environment chambers under three CO2 concentrations. Our physiological findings showed the growth, assessed as stem diameter, was significantly increased, and the net photosynthetic rate was decreased in elevated CO2 concentrations. The concentrations of four major endogenous hormones appeared to actively promote plant development. Leaf tissues under elevated CO2 concentrations had 5,127 genes with different expression patterns in comparison to leaves under the ambient CO2 concentration. Among these, 8 genes were finally selected for further investigation by using randomized variance model corrective ANOVA analysis, dynamic gene expression profiling, gene network construction, and quantitative real-time PCR validation. Among the 8 genes in the network, aldehyde dehydrogenase and pyruvate kinase were situated in the core and had interconnections with other genes.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>Under elevated CO2 concentrations, 8 significantly changed key genes involved in metabolism and responding to stimulus of external environment were identified. These genes play crucial roles in the signal transduction network and show strong correlations with elevated CO2 exposure. This study provides several target genes, further investigation of which could provide an initial step for better understanding the molecular mechanisms of plant acclimation and evolution in future rising CO2 concentrations.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24847851</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>01</Month>
<Day>29</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>9</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2014</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS One</ISOAbbreviation>
</Journal>
<ArticleTitle>Genes responsive to elevated CO2 concentrations in triploid white poplar and integrated gene network analysis.</ArticleTitle>
<Pagination>
<MedlinePgn>e98300</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0098300</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">The atmospheric CO2 concentration increases every year. While the effects of elevated CO2 on plant growth, physiology and metabolism have been studied, there is now a pressing need to understand the molecular mechanisms of how plants will respond to future increases in CO2 concentration using genomic techniques.</AbstractText>
<AbstractText Label="PRINCIPAL FINDINGS" NlmCategory="RESULTS">Gene expression in triploid white poplar ((Populus tomentosa ×P. bolleana) ×P. tomentosa) leaves was investigated using the Affymetrix poplar genome gene chip, after three months of growth in controlled environment chambers under three CO2 concentrations. Our physiological findings showed the growth, assessed as stem diameter, was significantly increased, and the net photosynthetic rate was decreased in elevated CO2 concentrations. The concentrations of four major endogenous hormones appeared to actively promote plant development. Leaf tissues under elevated CO2 concentrations had 5,127 genes with different expression patterns in comparison to leaves under the ambient CO2 concentration. Among these, 8 genes were finally selected for further investigation by using randomized variance model corrective ANOVA analysis, dynamic gene expression profiling, gene network construction, and quantitative real-time PCR validation. Among the 8 genes in the network, aldehyde dehydrogenase and pyruvate kinase were situated in the core and had interconnections with other genes.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">Under elevated CO2 concentrations, 8 significantly changed key genes involved in metabolism and responding to stimulus of external environment were identified. These genes play crucial roles in the signal transduction network and show strong correlations with elevated CO2 exposure. This study provides several target genes, further investigation of which could provide an initial step for better understanding the molecular mechanisms of plant acclimation and evolution in future rising CO2 concentrations.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Juanjuan</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China; Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Jianguo</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China; Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>He</LastName>
<ForeName>Caiyun</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China; Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Duan</LastName>
<ForeName>Aiguo</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China; Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>05</Month>
<Day>21</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005740">Gases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>142M471B3J</RegistryNumber>
<NameOfSubstance UI="D002245">Carbon Dioxide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.2.1.3</RegistryNumber>
<NameOfSubstance UI="D000444">Aldehyde Dehydrogenase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.40</RegistryNumber>
<NameOfSubstance UI="D011770">Pyruvate Kinase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000444" MajorTopicYN="N">Aldehyde Dehydrogenase</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002245" MajorTopicYN="N">Carbon Dioxide</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019295" MajorTopicYN="N">Computational Biology</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005740" MajorTopicYN="N">Gases</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005786" MajorTopicYN="Y">Gene Expression Regulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053263" MajorTopicYN="Y">Gene Regulatory Networks</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D023281" MajorTopicYN="N">Genomics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020411" MajorTopicYN="N">Oligonucleotide Array Sequence Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010788" MajorTopicYN="N">Photosynthesis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011123" MajorTopicYN="N">Polyploidy</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011770" MajorTopicYN="N">Pyruvate Kinase</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060888" MajorTopicYN="N">Real-Time Polymerase Chain Reaction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059467" MajorTopicYN="N">Transcriptome</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014197" MajorTopicYN="N">Trees</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>11</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>04</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>5</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>5</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>1</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24847851</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0098300</ArticleId>
<ArticleId IdType="pii">PONE-D-13-49679</ArticleId>
<ArticleId IdType="pmc">PMC4029852</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>New Phytol. 2009 Jun;182(4):891-911</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19383098</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 Jul;167(1):143-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15948837</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2009 Jun 1;25(11):1470-1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19307239</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2010;11:240</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20398290</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evid Based Complement Alternat Med. 2012;2012:908439</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22319547</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2003 Dec 12;19(18):2448-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14668230</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Jul 9;99(14):9121-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12082179</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Sep;142(1):135-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16877698</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2010 Apr;186(2):415-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20202130</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Mar 3;106(9):3597-602</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19204289</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Apoptosis. 2013 Sep;18(9):1039-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23793869</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Carcinogenesis. 2013 Dec;34(12):2851-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23803695</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Nov 30;101(48):16970-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15550548</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2009;60(10):2859-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19401412</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2004;55:591-628</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15377233</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Sep 7;276(36):34259-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11435428</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2006 Sep;29(9):1730-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16913862</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2011 Aug;76(6):575-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21614644</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Pollut. 2010 Apr;158(4):959-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19889492</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 Jul;167(1):129-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15948836</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brief Bioinform. 2006 Sep;7(3):243-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16880171</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2006 Nov;62(4-5):593-609</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16941220</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(8):e43583</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22916280</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2009;4(1):44-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19131956</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2007;58:435-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17280524</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2007;173(3):463-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17244042</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2008 Apr;31(4):419-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18194424</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2000 May;25(1):25-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10802651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2004 Aug 18;4:14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15317655</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
<settlement>
<li>Pékin</li>
</settlement>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Liu, Juanjuan" sort="Liu, Juanjuan" uniqKey="Liu J" first="Juanjuan" last="Liu">Juanjuan Liu</name>
</noRegion>
<name sortKey="Duan, Aiguo" sort="Duan, Aiguo" uniqKey="Duan A" first="Aiguo" last="Duan">Aiguo Duan</name>
<name sortKey="He, Caiyun" sort="He, Caiyun" uniqKey="He C" first="Caiyun" last="He">Caiyun He</name>
<name sortKey="Zhang, Jianguo" sort="Zhang, Jianguo" uniqKey="Zhang J" first="Jianguo" last="Zhang">Jianguo Zhang</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002217 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002217 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:24847851
   |texte=   Genes responsive to elevated CO2 concentrations in triploid white poplar and integrated gene network analysis.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:24847851" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020